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O

O

O

O
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a
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h

h
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n + 2
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C

0

0

0

⎯x
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C
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r2�
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ab�

�

�

�

Fig. 5.8A Centroids of common shapes of areas.

5.4 First Moments of Areas and Lines
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226  Distributed Forces: Centroids and Centers 
of Gravity

5.5 COMPOSITE PLATES AND WIRES
In many instances, a flat plate can be divided into rectangles, triangles, 
or the other common shapes shown in Fig. 5.8A. The abscissa X of its 
center of gravity G can be determined from the abscissas x1, x2, . . . , xn 
of the centers of gravity of the various parts by expressing that the 
moment of the weight of the whole plate about the y axis is equal 
to the sum of the moments of the weights of the various parts about 
the same axis (Fig. 5.9). The ordinate Y of the center of gravity of 
the plate is found in a similar way by equating moments about the 
x axis. We write

 ©My:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 ©Mx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn

⎯x

⎯y

r sin a
a

2r
� �

�

2r

2r

2
� r

� r

Shape

Quarter-circular
arc

Semicircular arc

Arc of circle

Length

0

2ar0

O
O

O

C

C

r

rC

⎯x

⎯y⎯x

a

a

Fig. 5.8B Centroids of common shapes of lines.

=

x

y

z

x

y

z

O
G

⎯X

⎯Y

W1 W2

W3

G1
G2

G3

ΣW

ΣMy :  ⎯X Σ W = Σ⎯x W

ΣMx :  ⎯Y Σ W = Σ⎯y W

O

Fig. 5.9 Center of gravity of a composite plate.
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227or, for short,

 X©W 5©x W   Y©W 5©y W  (5.7)

These equations can be solved for the coordinates X and Y of the 
center of gravity of the plate.

=

x

y

O

C⎯X

⎯Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  = ⎯X Σ A = Σ⎯x A

Qx  = ⎯Y Σ A = Σ⎯y A

x

y

O

Fig. 5.10 Centroid of a composite area.

 If the plate is homogeneous and of uniform thickness, the center 
of gravity coincides with the centroid C of its area. The abscissa X of 
the centroid of the area can be determined by noting that the first 
moment Qy of the composite area with respect to the y axis can be 
expressed both as the product of X and the total area and as the sum 
of the first moments of the elementary areas with respect to the y axis 
(Fig. 5.10). The ordinate Y of the centroid is found in a similar way 
by considering the first moment Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xnAn

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2 A2 1 . . . 1 ynAn

or, for short,

 Qy 5 X©A 5©xA   Qx 5 Y©A 5©yA (5.8)

These equations yield the first moments of the composite area, or 
they can be used to obtain the coordinates X and Y of its centroid.
 Care should be taken to assign the appropriate sign to the 
moment of each area. First moments of areas, like moments of 
forces, can be positive or negative. For example, an area whose cen-
troid is located to the left of the y axis will have a negative first 
moment with respect to that axis. Also, the area of a hole should be 
assigned a negative sign (Fig. 5.11).
 Similarly, it is possible in many cases to determine the center 
of gravity of a composite wire or the centroid of a composite line 
by dividing the wire or line into simpler elements (see Sample 
Prob. 5.2).

x

y

z

x

y

⎯x1

⎯x2

⎯xA⎯x

W1
W2

W3

A1

A1 Semicircle

A2 Full rectangle

A3 Circular hole

A2 A3

+

–

A

⎯x3

⎯x1

⎯x3

⎯x2

+

+

–

+ +

–

–

Fig. 5.11

5.5 Composite Plates and Wires
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SAMPLE PROBLEM 5.1

For the plane area shown, determine (a) the first moments with respect to 
the x and y axes, (b) the location of the centroid.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

SOLUTION

Components of Area. The area is obtained by adding a rectangle, a tri-
angle, and a semicircle and by then subtracting a circle. Using the coordi-
nate axes shown, the area and the coordinates of the centroid of each of the 
component areas are determined and entered in the table below. The area 
of the circle is indicated as negative, since it is to be subtracted from the 
other areas. We note that the coordinate y of the centroid of the triangle is 
negative for the axes shown. The first moments of the component areas with 
respect to the coordinate axes are computed and entered in the table.

y y

x

80 mm

60 mm

r1 = 60 mm

r2 = 40 mm

120 mm

x x x x

y y y

= + + _
40 mm

40 mm

–20 mm

= 25.46 mm
4r1 
3 r1 = 60 mm

r2 = 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

�

a. First Moments of the Area. Using Eqs. (5.8), we write

 Qx 5 ©yA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 ◀

 Qy 5 ©xA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 ◀

b. Location of Centroid. Substituting the values given in the table into 
the equations defining the centroid of a composite area, we obtain

X©A 5 ©xA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm ◀

Y©A 5 ©yA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y 5 36.6 mm ◀

y

x

C

X = 54.8 mm

Y = 36.6 mm

Component A, mm2 x, mm y, mm x A, mm3 y A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 1
2p(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2p(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103
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SAMPLE PROBLEM 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

26 in.
10 in.

24 in.

C

BA

SOLUTION

Since the figure is formed of homogeneous wire, its center of gravity coin-
cides with the centroid of the corresponding line. Therefore, that centroid 
will be determined. Choosing the coordinate axes shown, with origin at A, 
we determine the coordinates of the centroid of each line segment and 
compute the first moments with respect to the coordinate axes.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0
BC 26 12 5 312 130
CA 10  0 5   0  50

 oL 5 60   ©x L 5 600 ©y L 5 180

Substituting the values obtained from the table into the equations defining 
the centroid of a composite line, we obtain

X©L 5 ©x L:   X(60 in.) 5 600 in2 X 5 10 in. ◀

Y©L 5 ©y L:  Y(60 in.) 5 180 in2 Y 5  3 in. ◀

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.
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SAMPLE PROBLEM 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 
at A and rests against a frictionless surface at B. Determine the reactions 
at A and B.

A

B

O

r

SOLUTION

Free-Body Diagram. A free-body diagram of the rod is drawn. The forces 
acting on the rod are its weight W, which is applied at the center of gravity 
G (whose position is obtained from Fig. 5.8B); a reaction at A, represented 
by its components Ax and Ay; and a horizontal reaction at B.

Equilibrium Equations

1l oMA 5 0: B(2r) 2 W  a2r
p
b 5 0

 
B 5 1

W
p  

B 5
W
p
y ◀

y
1 ©Fx 5 0: Ax 1 B 5 0

 
Ax 5 2B 5 2

W
p
    Ax 5

W
p
z

1x©Fy 5 0: Ay 2 W 5 0 Ay 5 W  x

Adding the two components of the reaction at A:

 
A 5 cW2 1 aW

p
b2 d 1/2

 
A 5 W  a1 1

1
p2b

1/2

 ◀

tan a 5
W

W/p
5 p

 
 a 5 tan21p ◀

The answers can also be expressed as follows:

A 5 1.049W b72.3°  B 5 0.318Wy ◀

G

B

Ax

A

Ay

WB

2r

2r
�

Ay = W

a

Ax =
W
�

A
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 5.1 through 5.9 Locate the centroid of the plane area shown.

PROBLEMS

y

x

30 mm

300 mm

240 mm

30 mm

Fig. P5.1

y

x

20 mm 30 mm

36 mm

24 mm

Fig. P5.2

x

y

12 in. 21 in.

15 in.

Fig. P5.3

y

6 in.

6 in.

6 in.

6 in.

3 in.

x x

y

120 mm

r = 75 mm

Fig. P5.6

x

y

r = 4 in.

8 in.

12 in.

8 in.6 in.

Fig. P5.5Fig. P5.4

x

y

30 in.

30 in.

r = 15 in.
20 in.

Fig. P5.8

x

y

r = 38 in.
16 in.

20 in.

Fig. P5.7

x

y

60 mm

60 mm

Fig. P5.9

bee29400_ch05_218-283.indd Page 232  11/29/08  4:54:27 PM user-s172bee29400_ch05_218-283.indd Page 232  11/29/08  4:54:27 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



233Problems 5.10 through 5.15 Locate the centroid of the plane area shown.

 5.16 Determine the y coordinate of the centroid of the shaded area in 
terms of r1, r2, and a.

Parabola

Vertex50 mm

15 mm

80 mm

y

x

Fig. P5.12

x

y

r2 = 12 in. r1 = 8 in.

Fig. P5.11

x

y

Semiellipse

70 mm

26 mm

47 mm 47 mm

Fig. P5.10

x

y

Vertex

Parabola

75 mm

60 mm

60 mm

Fig. P5.15

x

y

r

x = ky2
20 mm 20 mm

30 mm

Fig. P5.13

x = ky2

x 

y = kx2

y 

20 in.

20 in.

Fig. P5.14

x

y

α α
r1 r2

Fig. P5.16 and P5.17

 5.17 Show that as r1 approaches r2, the location of the centroid 
approaches that for an arc of circle of radius (r1 1 r2)/2.

 5.18 For the area shown, determine the ratio a/b for which x 5 y.

 5.19 For the semiannular area of Prob. 5.11, determine the ratio r2/r1 
so that y 5 3r1/4.

x

y

y = kx2

a

b

Fig. P5.18
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234 Distributed Forces: Centroids and Centers
of Gravity

300 mm

12 mm 12 mm

12 mm

12 mm

60 mm

60 mm

A

C C
x x

B

(a) (b)

450 mm

Fig. P5.20

  5.21 and 5.22 The horizontal x axis is drawn through the centroid 
C of the area shown, and it divides the area into two component 
areas A1 and A2. Determine the first moment of each component 
area with respect to the x axis, and explain the results obtained.

x

y

C

A1

A2

4.5 in.4.5 in.

7.5 in.

Fig. P5.21

x

y

C

A1

A2

0.75 in.

0.75 in.

1.50 in.

1.50 in.

2.00 in.

2.00 in.

4.00 in.

2.00 in.

1.50 in.

Fig. P5.22

 5.20 A composite beam is constructed by bolting four plates to four 
60 3 60 3 12-mm angles as shown. The bolts are equally spaced 
along the beam, and the beam supports a vertical load. As proved 
in mechanics of materials, the shearing forces exerted on the bolts 
at A and B are proportional to the first moments with respect to 
the centroidal x axis of the red shaded areas shown, respectively, 
in parts a and b of the figure. Knowing that the force exerted 
on the bolt at A is 280 N, determine the force exerted on the bolt 
at B.
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235Problems 5.23 The first moment of the shaded area with respect to the x axis 
is denoted by Qx. (a) Express Qx in terms of b, c, and the distance 
y from the base of the shaded area to the x axis. (b) For what 
value of y is Qx maximum, and what is that maximum value?

x

y

b

c
y

c

C

Fig. P5.23

 5.24 through 5.27 A thin, homogeneous wire is bent to form the 
perimeter of the figure indicated. Locate the center of gravity of 
the wire figure thus formed.

   5.24 Fig. P5.1.
   5.25 Fig. P5.2.
   5.26 Fig. P5.3.
   5.27 Fig. P5.7.

 5.28 A uniform circular rod of weight 8 lb and radius 10 in. is attached 
to a pin at C and to the cable AB. Determine (a) the tension in 
the cable, (b) the reaction at C.

 5.29 Member ABCDE is a component of a mobile and is formed from 
a single piece of aluminum tubing. Knowing that the member is 
supported at C and that l 5 2 m, determine the distance d so that 
portion BCD of the member is horizontal.

B

r

C

A

Fig. P5.28

 5.30 Member ABCDE is a component of a mobile and is formed from 
a single piece of aluminum tubing. Knowing that the member is 
supported at C and that d is 0.50 m, determine the length l of arm 
DE so that this portion of the member is horizontal.

A

B C D

E

1.50 m

d

0.75 m

l

55°55°

Fig. P5.29 and P5.30
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 5.31 The homogeneous wire ABC is bent into a semicircular arc and a 
straight section as shown and is attached to a hinge at A. Deter-
mine the value of u for which the wire is in equilibrium for the 
indicated position.

 5.32 Determine the distance h for which the centroid of the shaded 
area is as far above line BB9 as possible when (a) k 5 0.10, 
(b) k 5 0.80.

 5.33 Knowing that the distance h has been selected to maximize the 
distance y from line BB9 to the centroid of the shaded area, show 
that y 5 2h/3.

B B'

b

kb

a

h

Fig. P5.32 and P5.33

A

B

C

r

q

r

Fig. P5.31

5.6  DETERMINATION OF CENTROIDS 
BY INTEGRATION

The centroid of an area bounded by analytical curves (i.e., curves 
defined by algebraic equations) is usually determined by evaluating 
the integrals in Eqs. (5.3) of Sec. 5.3:

 xA 5 #  x dA   yA 5 #  y dA (5.3)

If the element of area dA is a small rectangle of sides dx and dy, 
the evaluation of each of these integrals requires a double integra-
tion with respect to x and y. A double integration is also necessary 
if polar coordinates are used for which dA is a small element of 
sides dr and r du.
 In most cases, however, it is possible to determine the coordi-
nates of the centroid of an area by performing a single integration. 
This is achieved by choosing dA to be a thin rectangle or strip or a 
thin sector or pie-shaped element (Fig. 5.12); the centroid of the 
thin rectangle is located at its center, and the centroid of the thin 
sector is located at a distance 23 

r from its vertex (as it is for a triangle). 
The coordinates of the centroid of the area under consideration are 
then obtained by expressing that the first moment of the entire area 
with respect to each of the coordinate axes is equal to the sum (or 
integral) of the corresponding moments of the elements of area. 

236 Distributed Forces: Centroids and Centers
of Gravity
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SAMPLE PROBLEM 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 
concentrated load. (b) Determine the reactions at the supports.

A B

wA = 1500 N/m

wB = 4500 N/m

L = 6 m

SOLUTION

a. Equivalent Concentrated Load. The magnitude of the resultant of the 
load is equal to the area under the load curve, and the line of action of the 
resultant passes through the centroid of the same area. We divide the area 
under the load curve into two triangles and construct the table below. To 
simplify the computations and tabulation, the given loads per unit length 
have been converted into kN/m.

Component A, kN x, m xA, kN ? m

Triangle I 4.5 2 9
Triangle II 13.5 4 54

 oA 5 18.0  oxA 5 63

Thus, X©A 5 ©xA:  X(18 kN) 5 63 kN ? m  X 5 3.5 m

The equivalent concentrated load is

W 5 18 kNw ◀

and its line of action is located at a distance

X 5 3.5 m to the right of A ◀

b. Reactions. The reaction at A is vertical and is denoted by A; the reaction 
at B is represented by its components Bx and By. The given load can be 
considered to be the sum of two triangular loads as shown. The resultant of 
each triangular load is equal to the area of the triangle and acts at its centroid. 
We write the following equilibrium equations for the free body shown:

y
1 ©Fx 5 0: Bx 5 0 ◀

1l oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kNx ◀ 

1l oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kNx ◀ 

Alternative Solution. The given distributed load can be replaced by its 
resultant, which was found in part a. The reactions can be determined by 
writing the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. We 
again obtain

Bx 5 0  By 5 10.5 kNx  A 5 7.5 kNx ◀

I

II
4.5 kN/m

1.5 kN/m

6 m
⎯x = 2 m

⎯x = 4 m

x

A B

18 kN
⎯X = 3.5 m

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m

6 m
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PROBLEMS

 5.66 and 5.67 For the beam and loading shown, determine (a) the 
magnitude and location of the resultant of the distributed load, 
(b) the reactions at the beam supports.

120 lb/ft
150 lb/ft

A B

9 ft

Fig. P5.66

A B

4 m

Parabola
Vertex

200 N/m
800 N/m

Fig. P5.67

 5.68 through 5.73 Determine the reactions at the beam supports 
for the given loading.

A B

4 m6 m

6 kN/m

2 kN/m

Fig. P5.68

600 lb/ft

480 lb/ft

A D
B C

2 ft
6 ft3 ft

Fig. P5.69

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.70

1000 N/m

1200 N/m

A B

3.6 m

Fig. P5.71

100 lb/ft

200 lb/ft

A B

6 ft12 ft

Parabolas

Fig. P5.72

A B

6 m

900 N/m

300 N/m

Parabola

Vertex

Fig. P5.73
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255Problems 5.74 Determine (a) the distance a so that the vertical reactions at sup-
ports A and B are equal, (b) the corresponding reactions at the 
supports.

 5.75 Determine (a) the distance a so that the reaction at support B is 
minimum, (b) the corresponding reactions at the supports.

 5.76 Determine the reactions at the beam supports for the given load-
ing when w0 5 150 lb/ft.

 5.77 Determine (a) the distributed load w0 at the end D of the beam 
ABCD for which the reaction at B is zero, (b) the corresponding 
reaction at C.

 5.78 The beam AB supports two concentrated loads and rests on soil 
that exerts a linearly distributed upward load as shown. Determine 
the values of wA and wB corresponding to equilibrium.

 5.79 For the beam and loading of Prob. 5.78, determine (a) the distance 
a for which wA 5 20 kN/m, (b) the corresponding value of wB.

A B

4 m

600 N/m

a

1800 N/m

Fig. P5.74 and P5.75

450 lb/ft
w0

A B C
D

4 ft 12 ft
2 ft

44.1 kip⋅ft

Fig. P5.76 and P5.77

A B
wA

wB

24 kN 30 kN
0.3 m

1.8 m

a = 0.6 m

Fig. P5.78

A B

C

2.4 m
4.8 m

7.2 m

Parabola

Vertex

Fig. P5.80

In the following problems, use g 5 62.4 lb/ft3 for the specific weight of fresh 
water and gc 5 150 lb/ft3 for the specific weight of concrete if U.S. customary 
units are used. With SI units, use r 5 103 kg/m3 for the density of fresh water 
and rc 5 2.40 3 103 kg/m3 for the density of concrete. (See the footnote on 
page 222 for how to determine the specific weight of a material given its 
density.)

 5.80 The cross section of a concrete dam is as shown. For a 1-m-wide 
dam section determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the point 
of application of the resultant of part a, (c) the resultant of the 
pressure forces exerted by the water on the face BC of the dam.

 5.81 The cross section of a concrete dam is as shown. For a 1-ft-wide 
dam section determine (a) the resultant of the reaction forces 
exerted by the ground on the base AB of the dam, (b) the point 
of application of the resultant of part a, (c) the resultant of the 
pressure forces exerted by the water on the face BC of the dam.

A B

C

8 ft

r = 21 ft

r = 21 ft

Fig. P5.81
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