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SAMPLE PROBLEM 7.2

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. From the free-body diagram of the entire beam, 
we find the reactions at B and D:

RB 5 46 kNx  RD 5 14 kNx

Shear and Bending Moment. We first determine the internal forces just 
to the right of the 20-kN load at A. Considering the stub of beam to the 
left of section 1 as a free body and assuming V and M to be positive (accord-
ing to the standard convention), we write

 1xoFy 5 0: 220 kN 2 V1 5 0 V1 5 220 kN
 1l oM1 5 0: (20 kN)(0 m) 1 M1 5 0 M1 5 0

 We next consider as a free body the portion of the beam to the left 
of section 2 and write

 1xoFy 5 0: 220 kN 2 V2 5 0 V2 5 220 kN
 1l oM2 5 0: (20 kN)(2.5 m) 1 M2 5 0 M2 5 250 kN ? m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown. We obtain

 V3 5 126 kN M3 5 250 kN ? m
 V4 5 126 kN M4 5 128 kN ? m
 V5 5 214 kN M5 5 128 kN ? m
 V6 5 214 kN M6 5 0

For several of the latter sections, the results are more easily obtained by 
considering as a free body the portion of the beam to the right of the 
 section. For example, considering the portion of the beam to the right of 
section 4, we write

 1xoFy 5 0: V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN
 1l oM4 5 0: 2M4 1 (14 kN)(2 m) 5 0 M4 5 128 kN ? m

Shear and Bending-Moment Diagrams. We can now plot the six points 
shown on the shear and bending-moment diagrams. As indicated in Sec. 7.5, 
the shear is of constant value between concentrated loads, and the bending 
moment varies linearly; we therefore obtain the shear and bending-moment 
diagrams shown.
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 7.29 through 7.32 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.
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7.33 and 7.34 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.35 and 7.36 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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7.37 and 7.38 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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371Problems 7.39 through 7.42 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.
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 7.43 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that a 5 0.3 m, (a) draw the 
shear and bending-moment diagrams, (b) determine the maximum 
absolute values of the shear and bending moment.
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 7.44 Solve Prob. 7.43 knowing that a 5 0.5 m.

 7.45 and 7.46 Assuming the upward reaction of the ground on beam 
AB to be uniformly distributed, (a) draw the shear and bending-
moment diagrams, (b) determine the maximum absolute values of 
the shear and bending moment.

 7.47 Assuming the upward reaction of the ground on beam AB to be 
uniformly distributed and knowing that P 5 wa, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.48 Solve Prob. 7.47 knowing that P 5 3wa.

 7.49 Draw the shear and bending-moment diagrams for the beam AB, 
and determine the shear and bending moment (a) just to the left 
of C, (b) just to the right of C.
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372 Forces in Beams and Cables  7.50 Two small channel sections DF and EH have been welded to the 
uniform beam AB of weight W 5 3 kN to form the rigid structural 
member shown. This member is being lifted by two cables attached 
at D and E. Knowing that u 5 30° and neglecting the weight of 
the channel sections, (a) draw the shear and bending-moment dia-
grams for beam AB, (b) determine the maximum absolute values 
of the shear and bending moment in the beam.

 7.51 Solve Prob. 7.50 when u 5 60°.

 7.52 through 7.54 Draw the shear and bending-moment diagrams 
for the beam AB, and determine the maximum absolute values of 
the shear and bending moment.
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 7.55 For the structural member of Prob. 7.50, determine (a) the angle 
u for which the maximum absolute value of the bending moment 
in beam AB is as small as possible, (b) the corresponding value of 
|M|max. (Hint: Draw the bending-moment diagram and then equate 
the absolute values of the largest positive and negative bending 
moments obtained.)

 7.56 For the beam of Prob. 7.43, determine (a) the distance a for which 
the maximum absolute value of the bending moment in the beam 
is as small as possible, (b) the corresponding value of |M|max. (See 
hint for Prob. 7.55.)

 7.57 For the beam of Prob. 7.47, determine (a) the ratio k 5 P/wa for 
which the maximum absolute value of the bending moment in the 
beam is as small as possible, (b) the corresponding value of |M|max. 
(See hint for Prob. 7.55.)

 7.58 A uniform beam is to be picked up by crane cables attached at A 
and B. Determine the distance a from the ends of the beam to the 
points where the cables should be attached if the maximum absolute 
value of the bending moment in the beam is to be as small as possi-
ble. (Hint: Draw the bending-moment diagram in terms of a, L, and 
the weight w per unit length, and then equate the absolute values of 
the largest positive and negative bending moments obtained.)

 7.59 For the beam shown, determine (a) the magnitude P of the two 
upward forces for which the maximum absolute value of the bend-
ing moment in the beam is as small as possible, (b) the correspond-
ing value of |M|max. (See hint for Prob. 7.55.)
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SAMPLE PROBLEM 7.4

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
determine the reactions:

 1olMA 5 0:
 D(24 ft) 2 (20 kips)(6 ft) 2 (12 kips)(14 ft) 2 (12 kips)(28 ft) 5 0
 D 5 126 kips D 5 26 kipsx
 1xoFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips A y 5 18 kipsx
y
1 oFx 5 0: Ax 5 0 A x 5 0

We also note that at both A and E the bending moment is zero; thus two 
points (indicated by small circles) are obtained on the bending-moment 
diagram.

Shear Diagram. Since dV/dx 5 2w, we find that between concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam into two 
parts and considering either part as a free body. For example, using the por-
tion of beam to the left of section 1, we obtain the shear between B and C:

 1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

We also find that the shear is 112 kips just to the right of D and zero at 
end E. Since the slope dV/dx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear curve 
between two points is equal to the change in bending moment between the 
same two points. For convenience, the area of each portion of the shear 
diagram is computed and is indicated on the diagram. Since the bending 
moment MA at the left end is known to be zero, we write

MB 2 MA 5 1108 MB 5 1108 kip ? ft
MC 2 MB 5 2 16 MC 5 1  92 kip ? ft
MD 2 MC 5 2140 MD 5 2 48 kip ? ft
ME 2 MD 5 1 48 ME 5 0

Since ME is known to be zero, a check of the computations is obtained.
 Between the concentrated loads and reactions the shear is constant; 
thus the slope dM/dx is constant, and the bending-moment diagram is drawn 
by connecting the known points with straight lines. Between D and E, where 
the shear diagram is an oblique straight line, the bending-moment diagram 
is a parabola.
 From the V and M diagrams we note that Vmax 5 18 kips and 
Mmax 5 108 kip ? ft.
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SOLUTION

Free-Body: Entire Beam. Considering the entire beam as a free body, we 
obtain the reactions

RA 5 80 kNx  RC 5 40 kNx

Shear Diagram. The shear just to the right of A is VA 5 180 kN. Since 
the change in shear between two points is equal to minus the area under 
the load curve between the same two points, we obtain VB by writing

 VB 2 VA 5 2(20 kN/m)(6 m) 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

Since the slope dV/dx 5 2w is constant between A and B, the shear dia-
gram between these two points is represented by a straight line. Between 
B and C, the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each 
end of the beam is zero. In order to determine the maximum bending 
moment, we locate the section D of the beam where V 5 0. We write

 VD 2 VA 5 2wx
 0 2 80 kN 5 2(20 kN/m)x

and, solving for x: x 5 4 m ◀

 The maximum bending moment occurs at point D, where we have 
dM/dx 5 V 5 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagram. Since the area of 
the shear diagram between two points is equal to the change in bending 
moment between the same two points, we write

 MD 2 MA 5 1160 kN ? m MD 5 1160 kN ? m
 MB 2 MD 5 2 40 kN ? m M B 5 1120 kN ? m
 MC 2 MB 5 2120 kN ? m M C 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line; the slope of the parabola at A is equal to the value 
of V at that point.
 The maximum bending moment is

Mmax 5 MD 5 1160 kN ? m ◀

SAMPLE PROBLEM 7.5

Draw the shear and bending-moment diagrams for the beam and loading 
shown and determine the location and magnitude of the maximum bending 
moment.
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SAMPLE PROBLEM 7.6

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown.

SAMPLE PROBLEM 7.7

The simple beam AC is loaded by a couple of magnitude T applied at point B. 
Draw the shear and bending-moment diagrams for the beam.

SOLUTION

Free Body: Entire Beam. The entire beam is taken as a free body, and we 
obtain

RA 5
T
L
x   RC 5

T
L

 w

Shear and Bending-Moment Diagrams. The shear at any section is con-
stant and equal to T/L. Since a couple is applied at B, the bending-moment 
diagram is discontinuous at B; the bending moment decreases suddenly by 
an amount equal to T.
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SOLUTION

Shear Diagram. At the free end of the beam, we find VA 5 0. Between 
A and B, the area under the load curve is 1

2 w0 a; we find VB by writing

VB 2 VA 5 21
2 
w0 

a   VB 5 21
2 
w0 

a

Between B and C, the beam is not loaded; thus VC 5 VB. At A, we have 
w 5 w0, and, according to Eq. (7.1), the slope of the shear curve is dV/dx 5 
2w0, while at B the slope is dV/dx 5 0. Between A and B, the loading 
decreases linearly, and the shear diagram is parabolic. Between B and C, 
w 5 0, and the shear diagram is a horizontal line.

Bending-Moment Diagram. We note that MA 5 0 at the free end of the 
beam. We compute the area under the shear curve and write

 MB 2 MA 5 21
3 
w0  

a2    MB 5 21
3 
w0  

a2

 MC 2 MB 5 21
2 
w0  

a(L 2 a)   
 MC 5 21

6 
w0a(3L 2 a)  

The sketch of the bending-moment diagram is completed by recalling that 
dM/dx 5 V. We find that between A and B the diagram is represented by 
a cubic curve with zero slope at A, and between B and C the diagram is 
represented by a straight line.

bee29400_ch07_352-409.indd Page 378  12/2/08  1:14:55 AM user-s173bee29400_ch07_352-409.indd Page 378  12/2/08  1:14:55 AM user-s173 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



PROBLEMS
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 7.63 Using the method of Sec. 7.6, solve Prob. 7.29.

7.64 Using the method of Sec. 7.6, solve Prob. 7.30.

7.65 Using the method of Sec. 7.6, solve Prob. 7.31.

7.66 Using the method of Sec. 7.6, solve Prob. 7.32.

7.67 Using the method of Sec. 7.6, solve Prob. 7.33.

7.68 Using the method of Sec. 7.6, solve Prob. 7.34.

 7.69 and 7.70 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.

 7.71 Using the method of Sec. 7.6, solve Prob. 7.39.

7.72 Using the method of Sec. 7.6, solve Prob. 7.40.

7.73 Using the method of Sec. 7.6, solve Prob. 7.41.

7.74 Using the method of Sec. 7.6, solve Prob. 7.42.

7.75 and 7.76 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the maximum abso-
lute values of the shear and bending moment.
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  7.77 and 7.78 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the magnitude and 
location of the maximum bending moment.
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 7.79 and 7.80 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the magnitude and 
location of the maximum absolute value of the bending moment.
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382 Forces in Beams and Cables  7.81 (a) Draw the shear and bending-moment diagrams for beam AB, 
(b) determine the magnitude and location of the maximum abso-
lute value of the bending moment.

 7.82 Solve Prob. 7.81 assuming that the 300-lb force applied at D is 
directed upward.

 7.83 For the beam and loading shown, (a) draw the shear and bending-
moment diagrams, (b) determine the magnitude and location of 
the maximum absolute value of the bending moment.
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 7.84 Solve Prob. 7.83 assuming that the 20-kN ? m couple applied at B 

is counterclockwise.

 7.85 and 7.86 For the beam and loading shown, (a) write the equa-
tions of the shear and bending-moment curves, (b) determine the 
magnitude and location of the maximum bending moment.

 7.87 For the beam and loading shown, (a) write the equations of the 
shear and bending-moment curves, (b) determine the magnitude 
and location of the maximum bending moment.
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 7.88 The beam AB, which lies on the ground, supports the parabolic load 
shown. Assuming the upward reaction of the ground to be uniformly 
distributed, (a) write the equations of the shear and bending-moment 
curves, (b) determine the maximum bending moment.

 7.89 The beam AB is subjected to the uniformly distributed load shown 
and to two unknown forces P and Q. Knowing that it has been 
experimentally determined that the bending moment is 1800 N ? 
m at D and 11300 N ? m at E, (a) determine P and Q, (b) draw the 
shear and bending-moment diagrams for the beam.

 7.90 Solve Prob. 7.89 assuming that the bending moment was found to 
be 1650 N ? m at D and 11450 N ? m at E.
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