
85

 SAMPLE PROBLEM 3.1 

 A 100-lb vertical force is applied to the end of a lever which is attached to a shaft 
at  O . Determine ( a ) the moment of the 100-lb force about  O ; ( b ) the horizontal 
force applied at  A  which creates the same moment about  O ; ( c ) the smallest 
force applied at  A  which creates the same moment about  O ; ( d ) how far from 
the shaft a 240-lb vertical force must act to create the same moment about  O ; 
( e ) whether any one of the forces obtained in parts  b ,  c , and  d  is equivalent to 
the original force. 

100 lb

60°

A

O

24 in.

  SOLUTION  

 a.   Moment about  O.   The perpendicular distance from  O  to the line of 
action of the 100-lb force is

 d 5 (24 in.) cos 60° 5 12 in. 

 The magnitude of the moment about  O  of the 100-lb force is

  MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb ? in.  

  Since the force tends to rotate the lever clockwise about  O , the moment 
will be represented by a vector  M   O   perpendicular to the plane of the figure 
and pointing  into  the paper. We express this fact by writing

 MO 5 1200 lb ? in. i ◀ 

 b.   Horizontal Force.   In this case, we have

 d 5 (24 in.) sin 60° 5 20.8 in. 

 Since the moment about  O  must be 1200 lb · in., we write

  MO 5 Fd 
  1200 lb ? in. 5 F(20.8 in.) 
   F 5 57.7 lb F 5 57.7 lb y ◀ 

 c.   Smallest Force.   Since  M O  5  Fd , the smallest value of  F  occurs when 
 d  is maximum. We choose the force perpendicular to  OA  and note that  
d  5 24 in.; thus

  MO 5 Fd 
  1200 lb ? in. 5 F(24 in.) 
   F 5 50 lb F 5 50 lb c30° ◀   

 d.   240-lb Vertical Force.   In this case  M   O   5 Fd  yields

  1200 lb ? in. 5 (240 lb)d  d 5 5 in. 
 but  OB cos 60° 5 d OB 5 10 in. ◀ 

 e.   None of the forces considered in parts  b ,  c , and  d  is equivalent to the 
original 100-lb force. Although they have the same moment about  O , they 
have different  x  and  y  components. In other words, although each force 
tends to rotate the shaft in the same manner, each causes the lever to pull 
on the shaft in a different way. 

60°

MO

100 lb

A

O

24 in.

d

F

60°

MO

A

O

24 in.
d

F

MO

60°

A

O

24 in.

240 lb

MO
60°

A

B

O
d
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 SAMPLE PROBLEM 3.3 

 A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 
moment of the force about  O.  

 SAMPLE PROBLEM 3.2 

 A force of 800 N acts on a bracket as shown. Determine the moment of the 
force about  B.  

      SOLUTION 

 The moment  M  B  of the force  F  about  B  is obtained by forming the vector 
product

  MB 5 rA/B 3 F 

  where  r  A/B  is the vector drawn from  B  to  A . Resolving  r  A/B  and  F  into 
rectangular components, we have

  rA/B 5 2(0.2 m)i 1 (0.16 m)j 
   F 5 (800 N) cos 60°i 1 (800 N) sin 60°j 
  5 (400 N)i 1 (693 N)j 

   Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5), 
we obtain

   MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j] 
  5 2(138.6 N ? m)k 2 (64.0 N ? m)k 
   5 2(202.6 N ? m)k MB 5 203 N ? m i ◀ 

  The moment  M  B  is a vector perpendicular to the plane of the figure and 
pointing  into  the paper.      

60°

Fy = (693 N) j

Fx = (400 N) i

rA/B

MB

F = 800 N

+ (0.16 m) j

– (0.2 m) i

A

B

800 N

60°

B

A

160 mm

200 mm

A

O

20°

50°

30 lb

3 ft

MO

P

Q

A

O

20° 30 lb

3 ft

  SOLUTION 

 The force is replaced by two components, one component  P  in the direction 
of  OA  and one component  Q  perpendicular to  OA . Since  O  is on the line 
of action of  P , the moment of  P  about  O  is zero and the moment of the 
30-lb force reduces to the moment of  Q , which is clockwise and, thus, is 
represented by a negative scalar. 

 Q 5 (30 lb) sin 20° 5 10.26 lb 
  MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb ? ft 

  Since the value obtained for the scalar  M   O   is negative, the moment  M   O   
points  into  the paper. We write

  MO 5 30.8 lb ? ft i ◀        
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 SAMPLE PROBLEM 3.4 

  A rectangular plate is supported by brackets at  A  and  B  and by a wire  CD . 
Knowing that the tension in the wire is 200 N, determine the moment about 
 A  of the force exerted by the wire on point  C .   80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm

SOLUTION 

 The moment  M  A  about  A  of the force  F  exerted by the wire on point  C  is 
obtained by forming the vector product

   MA 5 rC/A 3 F (1) 

  where  r  C/A  is the vector drawn from  A  to  C ,

   rC/A 5 AC
¡

5 (0.3 m)i 1 (0.08 m)k  (2)

  and  F  is the 200-N force directed along  CD . Introducing the unit vector
L 5 CD

¡
/CD, we write

   
F 5 FL 5 (200 N) 

CD
¡

CD   
(3)

     

 Resolving the vector CD
¡

 into rectangular components, we have

   CD
¡

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m  

  Substituting into (3), we obtain

   
 F 5

200 N
0.50 m

 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]
  

    5 2(120 N)i 1 (96 N)j 2 (128 N)k    (4)

   Substituting for  r  C/A  and  F  from (2) and (4) into (1) and recalling the 
relations (3.7) of Sec. 3.5, we obtain

   MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)  
  5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)  

  MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k ◀         

Alternative Solution.   As indicated in Sec. 3.8, the moment  M  A  can be 
expressed in the form of a determinant:

    
MA 5 †

i j k
xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz

† 5 †
i j k

0.3 0 0.08
2120 96 2128

†

MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k     ◀

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m

A

C

D

(28.8 N•m) j

(28.8 N•m) k

– (7.68 N•m) i

F = (200 N)�
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 SOLVING PROBLEMS
ON YOUR OWN  

In this lesson we introduced the  vector product  or  cross product  of two vectors. 
In the following problems, you may want to use the vector product to compute 

the  moment of a force about a point  and also to determine the  perpendicular dis-
tance  from a point to a line. 

 We defined the moment of the force  F about the point  O of a rigid body as

   MO 5 r 3 F   (3.11)

 where  r is the position vector  from O to any point  on the line of action of  F.  Since 
the vector product is not commutative, it is absolutely necessary when computing 
such a product that you place the vectors in the proper order and that each vector 
have the correct sense. The moment  M O  is important because its magnitude is a 
measure of the tendency of the force  F to cause the rigid body to rotate about an 
axis directed along  M O . 

 1.  Computing the moment M  O  of a force in two dimensions.  You can use one 
of the following procedures: 
  a.   Use Eq. (3.12),  M O  5  Fd , which expresses the magnitude of the moment 
as the product of the magnitude of  F and the  perpendicular distance d  from  O to 
the line of action of  F (Sample Prob. 3.1).  
  b.   Express  r and  F in component form and formally evaluate the vector prod-
uct  M O  5  r 3 F  [Sample Prob. 3.2].  
  c.   Resolve  F into components respectively parallel and perpendicular to the 
position vector  r.  Only the perpendicular component contributes to the moment 
of  F [Sample Prob. 3.3].  
  d.   Use Eq. (3.22),  M O  5  Mz  5  xF y  2  yF x . When applying this method, the 
simplest approach is to treat the scalar components of  r and  F as positive and then 
to assign, by observation, the proper sign to the moment produced by each force 
component. For example, applying this method to solve Sample Prob. 3.2, we 
observe that both force components tend to produce a clockwise rotation about  B. 
Therefore, the moment of each force about  B should be represented by a negative 
scalar. We then have for the total moment

  MB 5 2(0.16 m)(400 N) 2 (0.20 m)(693 N) 5 2202 .6 N ? m  

 2.    Computing the moment M  O  of a force F in three dimensions . Following the 
method of Sample Prob. 3.4, the first step in the process is to select the most 
convenient (simplest) position vector  r. You should next express  F in terms of its 
rectangular components. The final step is to evaluate the vector product  r 3 F  to 
determine the moment. In most three-dimensional problems you will find it easiest 
to calculate the vector product using a determinant.  

 3.   Determining the perpendicular distance d from a point A to a given line . 
First assume that a force  F of known magnitude  F lies along the given line. Next 
determine its moment about  A by forming the vector product  M A 5  r 3 F , and 
calculate this product as indicated above. Then compute its magnitude  M A. Finally, 
substitute the values of  F and  M A into the equation  M A 5  Fd  and solve for  d.  
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PROBLEMS  

  3.1   A foot valve for a pneumatic system is hinged at  B. Knowing that 
a 5 28°, determine the moment of the 16-N force about point  B
by resolving the force into horizontal and vertical components. 

  3.2   A foot valve for a pneumatic system is hinged at  B. Knowing that 
a 5 28°, determine the moment of the 16-N force about point  B
by resolving the force into components along  ABC  and in a direc-
tion perpendicular to  ABC .

  3.3   A 300-N force is applied at  A as shown. Determine ( a) the moment 
of the 300-N force about  D, ( b) the smallest force applied at  B
that creates the same moment about  D.

  3.4   A 300-N force is applied at  A as shown. Determine ( a) the moment 
of the 300-N force about  D, ( b) the magnitude and sense of the 
horizontal force applied at  C that creates the same moment about 
D, ( c) the smallest force applied at  C that creates the same moment 
about  D.

  3.5 An 8-lb force  P is applied to a shift lever. Determine the moment 
of  P about  B when a is equal to 25°. 

  3.6 For the shift lever shown, determine the magnitude and the direc-
tion of the smallest force  P that has a 210-lb ? in. clockwise moment 
about  B.

  3.7   An 11-lb force  P is applied to a shift lever. The moment of  P about 
 B is clockwise and has a magnitude of 250 lb ? in. Determine the 
value of a. 

  3.8   It is known that a vertical force of 200 lb is required to remove 
the nail at  C from the board. As the nail first starts moving, deter-
mine ( a) the moment about  B of the force exerted on the nail, 
( b) the magnitude of the force  P that creates the same moment 
about  B if a 5 10°, ( c) the smallest force  P that creates the same 
moment about  B.

 Fig. P3.3   and   P3.4  

300 N
A B

D

C

25°

100 mm 200 mm

200 mm

125 mm

 Fig. P3.5  ,  P3.6,   and P3.7  

A

B

P

a

8 in.

22 in.

 Fig. P3.8  

4 in.

A

B

P

18 in.

C

a

70°

 Fig. P3.1  and  P3.2  

A

B

C

16 N

20°

a
170 mm

80 mm
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90 Rigid Bodies: Equivalent Systems of Forces   3.9   A winch puller  AB  is used to straighten a fence post. Knowing that 
the tension in cable  BC  is 1040 N and length  d is 1.90 m, deter-
mine the moment about  D of the force exerted by the cable at  C 
by resolving that force into horizontal and vertical components 
applied ( a) at point  C, ( b) at point  E.

  3.10   It is known that a force with a moment of 960 N ? m about  D is 
required to straighten the fence post  CD . If  d 5 2.80 m, determine 
the tension that must be developed in the cable of winch puller 
 AB  to create the required moment about point  D.

A

B

C

D

E

d

0.875 m

0.2 m

 Fig. P3.9  ,  P3.10,   and  P3.11  

  3.11   It is known that a force with a moment of 960 N ? m about  D is 
required to straighten the fence post  CD . If the capacity of winch 
puller  AB  is 2400 N, determine the minimum value of distance  d 
to create the specified moment about point  D.

  3.12 and 3.13   The tailgate of a car is supported by the hydraulic 
lift  BC . If the lift exerts a 125-lb force directed along its centerline 
on the ball and socket at  B, determine the moment of the force 
about  A.

 Fig. P3.12  

A

B
C

15.3 in.

12.0 in.

12.0 in.

2.33 in.

17.2 in.

4.38 in.

7.62 in.

20.5 in.

A

B
C

 Fig. P3.13  
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91Problems

  3.15   Form the vector products  B 3 C  and  B9 3 C , where  B 5  B9 , and 
use the results obtained to prove the identity

   sin a cos b 5 1
2  sin (a 1 b) 1 1

2  sin (a 2 b).  

  3.16   A line passes through the points (20 m, 16 m) and (21 m, 24 m). 
Determine the perpendicular distance  d from the line to the origin 
 O of the system of coordinates.  

  3.17   The vectors  P and  Q are two adjacent sides of a parallelogram. Deter-
mine the area of the parallelogram when ( a)  P 5 27 i 1 3 j 2 3 k 
and  Q 5 2 i 1 2 j 1 5 k, ( b)  P 5 6 i 2 5 j 2 2 k and  Q 5 22 i 1 
5 j 2  k. 

  3.18   A plane contains the vectors  A and  B. Determine the unit vector 
normal to the plane when  A and  B are equal to, respectively, 
( a)  i 1 2 j 2 5 k and 4 i 2 7 j 2 5 k, ( b) 3 i 2 3 j 1 2 k and 22 i 1 
6 j 2 4 k. 

  3.19   Determine the moment about the origin  O of the force  F 5 4 i 1 
5 j 2 3 k that acts at a point  A. Assume that the position vector of 
 A is ( a)  r 5 2 i 2 3 j 1 4 k, ( b)  r 5 2 i 1 2.5 j 2 1.5 k, (c)  r 5 2 i 1 
5 j 1 6 k. 

  3.20   Determine the moment about the origin  O of the force  F 5 
22 i 1 3 j 1 5 k that acts at a point  A. Assume that the position 
vector of  A is ( a)  r 5  i 1  j 1  k, ( b)  r 5 2 i 1 3 j 2 5 k, (c)  r 5 
24 i 1 6 j 1 10 k. 

  3.21   A 200-N force is applied as shown to the bracket  ABC . Determine 
the moment of the force about  A.

  3.14   A mechanic uses a piece of pipe  AB  as a lever when tightening 
an alternator belt. When he pushes down at  A, a force of 485 N 
is exerted on the alternator at  B. Determine the moment of that 
force about bolt  C if its line of action passes through  O.

 Fig. P3.14  

A

B

C

120 mm

90 mm

72 mm

65 mm

O

y

x

C

B

B'

a

b
b

 Fig. P3.15  

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

 Fig. P3.21  
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92 Rigid Bodies: Equivalent Systems of Forces

  3.23   The 6-m boom  AB  has a fixed end  A. A steel cable is stretched 
from the free end  B of the boom to a point  C located on the verti-
cal wall. If the tension in the cable is 2.5 kN, determine the 
moment about  A of the force exerted by the cable at  B.

  3.24   A wooden board  AB , which is used as a temporary prop to  support 
a small roof, exerts at point  A of the roof a 57-lb force directed 
along  BA . Determine the moment about  C of that force. 

  3.25   The ramp  ABCD  is supported by cables at corners  C and  D. The 
tension in each of the cables is 810 N. Determine the moment 
about  A of the force exerted by ( a) the cable at  D, ( b) the cable 
at  C.

 Fig. P3.25  

x

y

z

A

B

C

D

E
F

G

H

0.6 m

0.6 m
2.7 m

1 m

2.3 m

3 m

 Fig. P3.23  

B

C

A

x

y

z

2.4 m

6 m

4 m

x

y

z

A
C

7 m

4.25 m

0.75 m
1 m

6 m

B

O

 Fig. P3.22 

y

B

C

D

36 in. 48 in.

90 in.

66 in.

5 in.

6 in.

A
z x

 Fig. P3.24  

  3.22   Before the trunk of a large tree is felled, cables  AB  and  BC  are 
attached as shown. Knowing that the tensions in cables  AB  and  BC  
are 555 N and 660 N, respectively, determine the moment about  O 
of the resultant force exerted on the tree by the cables at  B.
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93Problems  3.26   A small boat hangs from two davits, one of which is shown in the 
figure. The tension in line  ABAD  is 82 lb. Determine the moment 
about  C of the resultant force  R A  exerted on the davit at  A.

 Fig. P3.26  

3 ft

x

y

z

A

C

D7.75 ft

6 ft

B

 Fig. P3.34  

x

y

z

A

B

C

8 ft
3 ft
2 ft

10 ft

a

24 ft

18 ft

16 ft

  3.27   In Prob. 3.22, determine the perpendicular distance from point  O 
to cable  AB . 

  3.28   In Prob. 3.22, determine the perpendicular distance from point  O 
to cable  BC . 

  3.29   In Prob. 3.24, determine the perpendicular distance from point  D 
to a line drawn through points  A and  B. 

  3.30   In Prob. 3.24, determine the perpendicular distance from point  C 
to a line drawn through points  A and  B. 

  3.31   In Prob. 3.25, determine the perpendicular distance from point  A 
to portion  DE  of cable  DEF . 

  3.32   In Prob. 3.25, determine the perpendicular distance from point  A 
to a line drawn through points  C and  G. 

  3.33   In Prob. 3.26, determine the perpendicular distance from point  C 
to portion  AD  of the line  ABAD . 

  3.34   Determine the value of  a that minimizes the perpendicular dis-
tance from point  C to a section of pipeline that passes through 
points  A and  B.
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